Chem. Ber. 111, 1603-1618 (1978)

Heteronucleare Clustersysteme, XI¹⁾

Darstellung, Eigenschaften und Molekülstrukturen von Titan-, Zirconium- und Hafnium-substituierten Oxymethylidyntricobaltnonacarbonyl-Cluster-Verbindungen

Bernd Stutte, Volker Bätzel, Roland Boese und Günter Schmid*)*

Sonderforschungsbereich 127 – Kristallstruktur und Chemische Bindung – im Fachbereich Chemie der Universität Marburg, Lahnberge, D-3550 Marburg/Lahn

Eingegangen am 25. Juli 1977

Die Bis(cyclopentadienyl)metallchloride $(\eta - C_5H_5)_2MCl_2$ (2, **a**: M = Ti, **b**: M = Zr, **c**: M = Hf) reagieren mit $[(CO)_{10}Co_3]Li$ (1) zu den Clusterverbindungen $(CO)_9Co_3COM(Cl)(\eta - C_5H_5)_2$ (3) bzw. $[(CO)_9Co_3CO]_2M(\eta - C_5H_5)_2$ (4). Die Verbindungen 3 lassen sich mit NaOH in die sauerstoffverbrückten Komplexe $[(CO)_9Co_3COM(\eta - C_5H_5)_2]_2O$ (5) überführen. Die ¹H-NMR- und IR-Daten sind angegeben und werden diskutiert. Die Molekülstrukturen der Komplexe 3b,c und 4b,c wurden mittels Einkristall-Röntgenbeugungsmethoden bestimmt.

Heteronuclear Cluster Systems, XI¹⁾

Preparation, Properties, and Molecular Structures of Titanium-, Zirconium-, and

Hafnium-substituted Oxymethylidyne-tricobaltnonacarbonyl Cluster Compounds

The bis(cyclopentadienyl)metal chlorides $(\eta - C_5H_5)_2MCl_2$ (2, **a** : M = Ti, **b** : M = Zr, **c** : M = Hf) react with $[(CO)_{10}Co_3]Li$ (1) to form the cluster compounds $(CO)_9Co_3COM(Cl)(\eta - C_5H_5)_2$ (3) and $[(CO)_9Co_3CO]_2M(\eta - C_5H_5)_2$ (4), resp. The compounds 3 can be transformed into the oxygenbridged complexes $[(CO)_9Co_3COM(\eta - C_5H_5)_2]_2O$ (5) by NaOH. The ¹H NMR and IR data are given and discussed. The molecular structures of the complexes 3b, c and 4b, c have been determined by single-crystal X-ray diffraction methods.

In einer vorangegangenen Arbeit berichteten wir über die Darstellung und Molekülstruktur von μ_3 -{[Chlorobis(η -cyclopentadienyl)titanoxy]methylidyn}-cyclo-tris(tricarbonylcobalt) (3 Co-Co), (CO)₉Co₃COTi(Cl)(η -C₅H₅)₂²⁾. Die Synthese gelang durch Reaktion von (η -C₅H₅)₂TiCl₂ mit Co₂(CO)₈ in Analogie zu früheren Umsetzungen von Lewis-aciden Elementhalogeniden mit Co₂(CO)₈^{3, 4)}.

1970 berichteten *O'Brien* et al. über das Anion $[(CO)_{10}Co_3]^-$, das aus $Co_2(CO)_8$ und Alkalimetallen in Diethylether gebildet wird. Sie schrieben ihm die Struktur eines μ_3 -(Oxymethylidyn)tricobalt-Clusters mit 3 CO-Brücken zu⁵⁾. In ihren Reaktionen mit

²⁾ G. Schmid, V. Bätzel und B. Stutte, J. Organomet. Chem. 113, 67 (1976).

© Verlag Chemie, GmbH, D-6940 Weinheim, 1978

^{*)} Neue Anschrift: Fachbereich Chemie der Universität Essen, Universitätsstr., D-4300 Essen-1.

¹⁾ X. Mitteil.: G. Schmid, K. Bartl und R. Boese, Z. Naturforsch., Teil B 32, 1277 (1977).

³⁾ G. Schmid und V. Bätzel, J. Organomet. Chem. 46, 149 (1972).

⁴⁾ G. Schmid, V. Bätzel, G. Etzrodt und R. Pfeil, J. Organomet. Chem. 86, 257 (1975).

⁵⁾ S. A. Fieldhouse, A. J. Cleland, B. H. Freeland, C. D. M. Mann und R. J. O'Brien, J. Chem. Soc. D 1970, 181.

Elementhalogeniden verhalten sich Lösungen von $[(CO)_{10}Co_3]$ Li nach unseren Beobachtungen verschiedenartig und teilweise recht unübersichtlich, so daß das Vorliegen einer einzelnen, definierten Verbindung zweifelhaft erscheint. Dies zeigen Untersuchungen mit verschiedenen Elementhalogeniden wie RPCl₂, R₂PCl oder $(CO)_3(\eta$ -C₅H₅)MCl (M = Mo, W), denen zufolge die etherische Lösung von " $[(CO)_{10}Co_3]$ Li" auch als $[Co(CO)_4]^-$ -Spender auftritt. Hierüber soll an anderer Stelle berichtet werden. Vielfach verhält sich $[(CO)_{10}Co_3]$ Li jedoch als Lieferant der Oxymethylidyngruppe $(CO)_9Co_3CO - {}^{6,7}$, die neben der μ_3 -CO-Gruppe neun endständige Carbonylreste enthält.

Nachfolgend werden die Reaktionen von $[(CO)_{10}Co_3]Li$ (1) mit $(\eta$ -C₅H₅)₂MCl₂ (2) (M = Ti, Zr, Hf) beschrieben. Im Gegensatz zur obengenannten Reaktion von Co₂(CO)₈ mit $(\eta$ -C₅H₅)₂TiCl₂ zu (CO)₉Co₃COTi(Cl)(η -C₅H₅)₂ lassen sich bei der Umsetzung mit $[(CO)_{10}Co_3]Li$ beide Chloratome durch Oxymethylidyngruppen substituieren.

Darstellung von (CO)₉Co₃COM(Cl)(η -C₅H₅)₂ und [(CO)₉Co₃CO]₂M(η -C₅H₅)₂(M = Ti, Zr, Hf)

Nach Gleichung (1) reagieren die Bis(cyclopentadienyl)metalldichloride (2) mit $[(CO)_{10}Co_3]Li$ (1) im Molverhältnis 1:1 in Benzol oder Toluol bei Raumtemperatur zu den μ_3 -{[Chlorobis(η -cyclopentadienyl)metalloxy]methylidyn}-cyclo-tris(tricarbonyl-cobalt)(3 Co-Co)-Komplexen (3).

$$\begin{bmatrix} (CO)_{10}Co_3 \end{bmatrix} \text{Li} + (\eta - C_5H_5)_2 \text{MCl}_2 \rightarrow (CO)_9 \text{Co}_3 \text{COM}(\text{Cl})(\eta - C_5H_5)_2 + \text{LiCl} \quad (1) \\ 1 & 2 & 3 \\ 2 & 1 + 2 \rightarrow [(CO)_9 \text{Co}_3 \text{CO}]_2 \text{M}(\eta - C_5H_5)_2 + 2 \text{LiCl} \quad (2) \end{bmatrix}$$

2, 3	М	Ausb. an 3 (%)	4	М	Ausb. (%)
a	Ti	57	a	Ti	38
b	Zr	72	b	Zr	35
с	l Hf	88	с	Hf	65

4

3a ist identisch mit der aus $Co_2(CO)_8$ und **2a** erhaltenen Verbindung²⁾. Die neuen Zirconium- und Hafniumverbindungen **3b** und **3c** bilden sich in hohen Ausbeuten in Form dunkelroter bis schwarzer Kristalle, die in aromatischen Lösungsmitteln mäßig, in aliphatischen schlecht löslich sind. Als Nebenprodukte der Reaktionen nach Gl. (1) treten in geringen Mengen die zweifach substituierten Metallkomplexe [(CO)₉Co₃CO]₂M-(η -C₅H₅)₂ (**4**) auf, die in höheren Ausbeuten besser nach Gl. (2) erhältlich sind.

Während bei den Reaktionen nach Gl. (1) die Lösungen von 1 zu benzolischen oder toluolischen Lösungen von 2 getropft werden, verfährt man bei den Reaktionen nach Gl. (2) umgekehrt. Auch die Komplexe 4 stellen im kristallinen Zustand nahezu schwarze Produkte dar, die ähnliche Löslichkeitseigenschaften haben wie die Verbindungen 3. Beim Erhitzen tritt bei allen drei Verbindungen Zersetzung ohne Schmelzen ein.

⁶⁾ C. D. M. Mann, A. J. Cleland, S. A. Fieldhouse, B. H. Freeland und R. J. O'Brien, J. Organomet. Chem. 24, C61 (1970).

⁷⁾ V. Bätzel und G. Schmid, Chem. Ber. 109, 3339 (1976).

Chemische und spektroskopische Eigenschaften

Die Anwesenheit eines Cl-Liganden in den Verbindungen 3 bietet Gelegenheit zu chemischen Reaktionen. Als solche kann die obengenannte Synthese von 4 angesehen werden, da das Monosubstitutionsprodukt 3 dabei als Primärstufe auftritt. Ferner gelingt es, 3a-c in 5a-c überzuführen, wenn 3 mit festem, feingepulvertem NaOH in Toluol umgesetzt wird [Gl. (3)].

$$2 (CO)_{9}Co_{3}COM(Cl)(\eta - C_{5}H_{5})_{2} + 2 NaOH \rightarrow [(CO)_{9}Co_{3}COM(\eta - C_{5}H_{5})_{2}]_{2}O + 2 NaCl + H_{2}O \quad (3)$$

$$5$$

$$\frac{5}{a} \frac{M \text{ Ausb. (\%)}}{Ti \quad 36}$$

$$b \quad Zr \quad 15$$

$$c \quad Hf \quad 19$$

$$[(\eta - C_{5}H_{5})_{2}TiCl]_{2}O + 2 1 \rightarrow 5a + 2 LiCl \quad (4)$$

Den Titankomplex 5a konnten wir auch auf unabhängigem Weg nach Gl. (4) erhalten. Die Ausbeute war mit 4.3% allerdings sehr niedrig.

^tH-NMR- und IR-Spektren

Die ¹H-NMR-Spektren (C₆D₆, TMS) der Verbindungen 3–5 weisen je ein einziges Singulett für die Protonen der Cyclopentadienylringe auf. Die beiden C₅H₅-Ringe jedes Metallatomes sind somit äquivalent. Mit chemischen Verschiebungen zwischen $\delta = 5.97$ und 6.28 unterscheiden sich die Ringprotonen kaum von denen in den Ausgangskomplexen 2, d. h. die Substitution eines oder beider Chloratome durch die Oxymethylidyngruppe hat nur geringe elektronische Auswirkungen auf die π -gebundenen C₅H₅-Ringe. In Tab. 1 sind die wichtigsten IR-Daten der Verbindungen 3, 4 und 5 zusammengestellt.

Der v(CO)-Bereich von 3a - c und 5a - c hat in allen 6 Fällen dasselbe Aussehen, wenn man von geringfügigen Änderungen in den Bandenlagen absieht (Abb. 1).

Das identische Bandenmuster wurde bereits für $(CO)_9Co_3C-CH_3$ gefunden und analysiert⁸⁾. Die Komplexe 4 zeigen nicht nur bei den apikalen sondern auch bei den endständigen CO-Gruppen Kopplungserscheinungen, weshalb jeweils eine zusätzliche Bande auftritt. Eine vergrößerte Bandenzahl für die terminalen CO-Gruppen zeigt sich z. B. ebenfalls im $[(CO)_9Co_3C]_2^{9}$. Den apikalen CO-Gruppen ordnen wir die Schwingungen zwischen 1307 und 1413 cm⁻¹ zu. Für die Zr- und Hf-Komplexe liegen diese jeweils bei fast gleichen Frequenzen, die gegenüber den Ti-Verbindungen ca. 30 cm⁻¹ langwellig verschoben sind. Das Auftreten einer sehr starken, breiten Bande im Bereich 690-750 cm⁻¹ ist für die Verbindungen 5 charakteristisch. Sie ist eindeutig der M – O – M-Schwingung zuzuordnen und findet sich auch in den Verbindungen $[(\eta-C_5H_5)_2MCI]O^{10,11}$.

⁸⁾ G. Bor, Inorg. Chim. Acta, 2. Intern. Symp. Advances in the Chemistry of Metal Carbon, Metal Hydrogen and Metal Olefin Complexes, 1969, S. 56.

⁹⁾ G. Bor, L. Markó und B. Markó, Chem. Ber. 95, 333 (1962).

¹⁰⁾ S. A. Giddings, Inorg. Chem. 3, 684 (1964).

¹¹⁾ E. Samuel, Bull. Soc. Chim. Fr. 1966, 3548.

Tab. 1. IR-Dat	en der Verbindunge	en (CO) ₉ Co ₃ COM(Cl)(η-C ₅ H ₅) ₂ (3),	[(CO) ₉ Co ₃ COM(1	$[-C_5H_5)_2]_2O$ (5) und	[(CO) ₉ Co ₃ CO] ₂ M(1	η-C ₅ H ₅) ₂ ((4) (cm ⁻¹)
Verb.	v ₁ (a ₁)	v4(e)	Zuordnung vCO ^{a)} v ₂ (a ₁)	v _s (e)	v(¹³ CO)	v(C-O) _{apikal}	Ŵ'n	W-0-]
3a	2093	2040	2029	1991	1970	1401		
3b	2105	2046	2037	2001	1981	1373		
3с	2109	2051	2041	2004	1984	1373		
5a	2098	2041	2030	1990	1970	1413		695
5b	2104	2043	2034	1998	1978	1377		713
5c	2106	2045	2034	1998	1977	1379		749
4 a ^{b)}	2099 (m) ^{د)}	2056 (sst)	2043 (st)	2039 (st)	2000 (m) 1976 (schw)	1403 13	337	
4 b ^{b)}	2104 (m)	2057 (sst)	2043 (sst)	2039 (sst)	2002 (m) 1983 (schw)	1372 13	307	
4 c ^{b)}	2108 (m)	2058 (sst)	2044 (sst)	2040 (sst)	2005 (m) 1983 (schw)	1378 13	309	
^{a)} Der vCO-Bei ^{b)} In Muiol/Dol-	reich der Verbindun	ıgen 3 wurde in n-H	lexan, der Verbind	ungen 5 in CH ₂ Cl ₃	2 gemessen.			
$c^{o} m = mittel, s^{o}$	yor. st = stark, sst = sel	hr stark, schw = scl	hwach.					
		5						
		*						
	22	300 2000 cm ⁻¹ 1800) Abb. 1. II	R-Spektrum von 3.	a im v(CO)-Bereich (I	Hexan)		

Der Anstieg der Frequenzen in der Reihe Ti, Zr, Hf ist auch dort zu beobachten und

Röntgenstrukturuntersuchungen

spricht für eine parallele Zunahme der M-O-Bindungsstärke.

Von den Clusterverbindungen des Typs $(CO)_9Co_3COM(Cl)(\eta-C_5H_5)_2$ (3) und $[(CO)_9Co_3CO]_2M(\eta-C_5H_5)_2$ (4) (a: M = Ti, b: M = Zr, c: M = Hf) wurden die Zirconium- und Hafniumverbindungen 3b, 3c bzw. 4b und 4c röntgenstrukturanalytisch untersucht. Über die Molekülstruktur der Titanverbindung 3a haben wir bereits früher berichtet².

Daten	3 b	3c	4 b	4c
Raumgruppe	$P2_1/n$	$P2_1/n$	Pbca	Pbca
Ζ	4	4	8	8
<i>a</i> (pm)	1465.2 (6)	1464.8 (9)	2223.3 (8)	2224 (1)
<i>b</i> (pm)	1475.0 (6)	1475.3 (9)	1955.7 (4)	1957 (2)
<i>c</i> (pm)	1236.5 (5)	1233.0 (5)	1811.9 (4)	1807 (4)
β(°)	114.39 (3)	114.26 (5)		
$V(10^9 \cdot \text{pm}^3)$	2.4338	2.429	7.878	7.865
$D_{\rm ber.} (\rm g \cdot \rm cm^{-3})$	1.95	2.19	1.91	2.06
Kristallgröße (mm)	$0.07 \times 0.27 \times 0.35$	$0.17 \times 0.32 \times 0.50$	$0.45 \times 0.31 \times 0.34$	$0.32 \times 0.30 \times 0.57$
Meßzeit (s) (Peak/Untergrund)	$40/2 \times 5$	40/2 × 5	$40/2 \times 5$	$40/2 \times 5$
Meßbreite $\Theta(^{\circ})$	22	22	22	22
Anzahl der unabhängige Reflexe	2990 n	2800	4826	4816
Anzahl der beobachteten Reflexe	2702	2394	3152	3125
R	0.038	0.084	0.065	0.089

Tab. 2. Gitterkonstanten und Meßdaten der Verbindungen 3b, 3c, 4b und 4c

Für die Strukturbestimmungen wurden jeweils Kristalle mit gut ausgebildeten Flächen ausgewählt und unter trockenem Stickstoff in dünnwandige Kapillaren aus Quarzglas eingeschmolzen. Die Gitterkonstanten wurden mit einem automatischen Vierkreisdiffraktometer (Philips PW 1100, Graphitmonochromator, Mo- K_{α} -Strahlung), das über ein automatisches Peaksuch-Programm verfügt, bestimmt. Die Interferenzintensitäten eines Satzes kristallographisch unabhängiger Reflexe wurden nach der $\Theta/2\Theta$ -scan-Technik mit demselben Gerät gesammelt und nach Mittelung mit mindestens einem Satz symmetriegleicher Reflexe für die Rechnungen benutzt. Die während der Messungen in Abständen von jeweils 2 Stunden vorgenommene Neubestimmung dreier Referenzreflexe zeigte in allen Fällen keine signifikante Intensitätsabnahme gegenüber den Ausgangswerten. Auf eine Absorptionskorrektur der Meßdaten wurde verzichtet.

Die Lageparameter der Schweratome ließen sich sowohl durch direkte Methoden¹²⁾ als auch durch dreidimensionale Patterson-Synthesen¹³⁾ (3b, 4b) herleiten; 2 Verfeinerungszyklen mit diesen Koordinaten durch Minimalisieren von $\sum (|F_o| - |F_c|)^2$ ergaben bereits einen Zuverlässig- $\sum ||F_o| - |F_c|^2$

keitsindex $R = \frac{\sum ||F_o| - |F_c||}{\sum |F_o|}$ von 0.30 bei **3b** und 0.28 bei **4b**.

¹²⁾ G. Germain, P. Main und M. M. Woolfson, Acta Crystallogr., Sect. A 27, 368 (1971).

¹³⁾ Gerechnet wurde mit dem X-Ray 70 System des MPI für Eiweiß- und Lederforschung, München.

	fab. 3. Atomk CO)9C03COZ	coordinaten u /r(Cl)(ŋ-C ₅ H ₅	nd anisotrope Tem) ₂ (3b). (Die Standa	peraturpara ırdabweichu	meter der Fo ngen in Klar	orm $\exp -(\beta_1)$ nmern sind a	$_{1}h^{2} + \beta_{22}k^{2} + \mu^{1}$ uf die jeweils l	$\beta_{33}l^2 + \beta_{23}kl$ etzte Stelle der	$l + \beta_{13}hl + \beta_{12}$ Zahlenwerte b	hk) für 220gen.)
Atom	×	٨	N	Atom	P.1	9 a a	B11	Ba3	β1,	β12
Zr(1)	0, 35700(3)	0,79151(3)	-0,08943(4)	Zr(1)	0,00503(3)	0,00402(2)	0,00589(4)	-0,00079(5)	0,00474(6)	-0,00105(4)
Co(1)	0,19723(5)	0,87596(4)	0,17602(6)	Co(1)	0,00294(4)	0,00213(3)	0,00487(6)	-0,00084(7)	0,00224(8)	0,00037(6)
Co(2)	0,38254(5)	0,87355(4)	0,28105(5)	Co(2)	0,00294(4)	0,00213(3)	0,00397(5)	-0,00101(6)	0,00210(7)	-0,00069(8)
Co(3)	0,28569(5)	0,73002(4)	0,25168(5)	Co(3)	0,00357(4)	0,00190(3)	0,00414(5)	0,00034(6)	0,00295(8)	-0,00022(6)
CI(1)	0,52184(11)	0,85294(11)	0,03556(13)	C1(1)	0,00469(9)	0,00625(9)	0,00854(14)	-0,00043(19)	0,00183(19)	-0,00391(15)
c(1)	0,2966(3)	0,8129(3)	0,1374(4)	C(T)	0,0036(3)	0,0017(2)	0,0042(4)	-0,0004(5)	0,0033(6)	-0,0008(4)
C(2)	0,1687(4)	0,9679(4)	0,0703(5)	C(2)	0,0050(4)	0,0032(3)	0,0069(5)	-0,0013(6)	0,0040(7)	0,0008(5)
c(3)	0,0812(4)	0,8186(4)	0,1103(5)	C(3)	0,0031(3)	0,0032(3)	0,0089(5)	-0,0008(6)	0,0016(7)	0,0003(4)
C(4)	0,1829(4)	0,9233(3)	0,3038(5)	C(4)	0,0042(3)	(E)0E00'0	0,0084(5)	-0,0006(6)	0,0059(7)	0,0004(4)
C(5)	0,5020(4)	0,8276(4)	0, 3058(4)	C(5)	0,0036(3)	0,0037(3)	0,0060(5)	-0,0011(6)	0,0023(6)	-0,0002(4)
C(6)	0,3949(4)	0,9819(4)	0,2223(4)	C(6)	0,0051(4)	0,0036(3)	0,0056(5)	-0,0002(6)	0,0047(7)	-0,0015(5)
c(7)	0,4026(4)	0,8993(3)	0,4344(4)	c(1)	0,0036(3)	0,0028(3)	0,0061(5)	0,0002(5)	0,0028(6)	0,0000(4)
c(8)	0,1987(4)	0,6539(3)	0,1456(4)	C(8)	0,0047(3)	0,0019(2)	0,0066(5)	0,0015(5)	0,0043(7)	0,0000(4)
c(6)	0,3933(4)	0,6603(3)	0,2922(5)	C(9)	0,0049(4)	0,0027(3)	0,0082(5)	0,0006(6)	0,0045(7)	-0,0005(4)
c(10)	0,2601(4)	0,7287(3)	0,3846(5)	(0T)C	0,0055(4)	0,0023(3)	0,0090(5)	-0,0003(6)	0,0057(8)	-0,0007(4)
c(11)	0,4252(6)	0,6365(4)	-0,0158(6)	c(11)	0,0105(6)	0,0044(4)	0,0104 (7)	-0,0001(8)	0,0043(10)	0,0063(7)
C(12)	0,4653(5)	0,6606(5)	-0,0942(7)	c(12)	0,0068(5)	0,0068(4)	0,0167(9)	-0,0045(10)	0,0114(11)	0,0023(7)
C(13)	0,3883(7)	0,6660(5)	-0,2038(6)	C(13)	0,0161(8)	0,0060(4)	0,0129(8)	-0,0037(9)	0,0214(14)	0,0025(9)
C(14)	0,3000(5)	0,6460(4)	-0,1946(6)	c(14)	0,0091(6)	0,0038(3)	0,0125(8)	-0,0068(8)	(01)E100'0	0,0001(7)
C(15)	0,3227(6)	0,6255(4)	-0,0772(7)	c(15)	0,0116(6)	0,0021(3)	0,0206(10)	-0,0030(9)	0,0202(14)	-0,0026(7)
C(16)	0,2907(4)	0,9509(4)	-0,1412(5)	C(16)	0,0059(4)	0,0033(3)	0,0068(5)	0,0022(6)	0,0027(7)	0,0006(5)
c(17)	0,3511(5)	0,9358(4)	-0,2010(5)	c(17)	0,0073(4)	0,0050(3)	0,0090(6)	0,0056(7)	0,0071(9)	-0,0026(6)
C(18)	0, 3079(6)	o,8687(5)	-0,2845(5)	c(18)	0,0123(6)	0,0064(4)	0,0066(5)	0,0038(8)	0,0112(10)	0,0028(8)
C(19)	0,2188(5)	0,8429(4)	-0,2775(5)	C(19)	0,0075(5)	0,0055(4)	0,0069(5)	0,0027(7)	-0,0013(8)	-0,0016(7)
C(20)	0, 2094(4)	0,8929(4)	-0,1899(5)	c(20)	0,0054(4)	0,0052(3)	0,0083(6)	0,0056(7)	0,0047(8)	0,0023(6)
0(1)	0,3064(2)	0,7992(2)	0,0409(3)	0(1)	0,0044(2)	0,002B(2)	0,0047(3)	-0,0005(4)	0,0037(4)	-0,0004(3)
0(2)	0,1476(4)	1,0246(3)	0,0045(4)	0(2)	0,0109(4)	0,0037(2)	0,0102(4)	0,0049(5)	0,0073(7)	0,0038(4)
O(3)	0,0053(3)	0,7839(3)	0,0724(4)	0(3)	0,0046(3)	0,0055(3)	0,0146(5)	-0,0030(6)	0,0022(6)	-0,0018(4)
0(4)	0,1718(3)	0,9531(3)	0,3823(4)	0(4)	0,0081(3)	0,0066(3)	0,0105(4)	-0,0056(6)	0,0102(6)	-0,0001(4)
o(5)	0,5793(3)	0,7982(3)	0,3262(4)	0(5)	0,0047(3)	0,0072(3)	0,0118(5)	-0,0005(6)	0,0049(6)	0,0024(4)
0(6)	0,4017(3)	1,0490(3)	0,1850(4)	0(9)	0,0087(3)	0,0040(2)	0,0129(5)	0,0036(5)	0,0115(7)	-0,0016(4)
0(1)	0,4162(3)	0,9157(3)	0,5296(3)	0(1)	0,0077(3)	0,0055(2)	0,0053(3)	-0,0011(4)	0,0052(5)	0,0003(4)
0(8)	0,1466(3)	0,6062(3)	0,0775(3)	0(8)	0,0066(3)	0,0033(2)	0,0093(4)	-0,0023(5)	0,0016(5)	-0,0023(4)
0(6)	0,4605(3)	O,6144(3)	o, 3152(4)	(6)0	0,0055(3)	0,0048(2)	0,0146(5)	0,0018(6)	0,0053(6)	0,0028(4)
o(10)	0,2442(4)	0,7282(3)	0,4674(4)	0(10)	0,0116(4)	0,0060(3)	0,0088(4)	-0,0014(5)	0,0144(7)	-0,0021(5)

1608

(CO) ₉ Co ₃ COHf((Cl)(η-C ₅ H ₅) ₂	2 (3c). (Die Standard	abweichun	gen in Klam	mern sind au	f die jeweils l	etzte Stelle de	r Zahlenwert	e bezogen.)
Atom	×	٨	·N	Atom	Bii	9	6 8 3	B & 3	818	B.a
H£(1)	0, 35672(10)	0,79242(9)	-0,09000(11)	Hf(1)	0,00392(8)	0,00258(6)	0,00529(10)	-0,00088(14)	0,00234(15)	-0,00120(13)
Co(1)	0,1973(3)	0,8761(3)	0,1753(4)	Co(1)	0,0029(3)	0,0014(2)	0,0055(4)	-0,0007(4)	0,0008(5)	0,0003(4)
Co(2)	0, 3821(3)	0,8737(3)	0,2799(3)	Co(2)	0,0028(2)	0,0012(2)	0,0050(3)	-0,0010(4)	0,0008(5)	-0,0008(4)
Co(3)	0, 2859(3)	0,7301(3)	0,2507(3)	Co(3)	0,0035(3)	0,0010(2)	0,0051(3)	0,0003(4)	0,0017(5)	-0,0005(4)
C1(1)	0,5181(7)	0,8545(7)	0,0344(8)	C1(1)	0,0046(6)	0,0053(6)	0,0096(9)	-0,0006(11)	-0,0003(12)	-0,0041(10)
c(1)	0,291(2)	0,813(2)	0,132(2)	c(1)	0,005(2)	0,002(1)	0,002(2)	-0,003(3)	0,007(4)	-0,002(3)
c(2)	0,172(3)	0,970(2)	0,068(3)	c(2)	0,006(2)	0,002(2)	0,007(3)	-0,002(4)	0,002(4)	-0,001(3)
C(3)	0,079(2)	0,818(2)	0,106(3)	C(3)	0,005(2)	0,002(2)	(£)600'0	0,002(4)	0,002(4)	0,003(3)
C(4)	0,181(2)	0,924(2)	0,302(3)	C(4)	0,002(2)	0,002(2)	0,012(4)	0,006(4)	0,004(4)	0,002(3)
C(5)	0,505(2)	0,827(2)	0,307(3)	C(5)	0,005(2)	0,003(2)	0,006(3)	-0,004(4)	0,002(4)	-0,004(3)
C(6)	0, 394(2)	0,984(2)	0,216(3)	C(6)	0,004(2)	0,005(2)	0,004(3)	-0,008(4)	0,003(4)	-0,003(3)
c(7)	0,401(2)	0,901(2)	0,435(3)	c(7)	0,005(2)	0,002(2)	0,010(3)	0,003(4)	0,008(4)	0,001(3)
c(8)	0,199(3)	0,654(2)	0,143(3)	C(8)	0,007(2)	0,001(1)	0,009(3)	0,003(3)	0,006(5)	0,001(3)
(6))	0,393(2)	0,660(2)	0,292(3)	c()	0,004(2)	0,002(2)	0,013(4)	-0,001(4)	0,003(4)	-0,003(3)
c(10)	0,257(3)	0,729(2)	0, 380(3)	C(10)	0,006(3)	0,001(2)	0,012(4)	0,000(4)	0,007(5)	-0,002(3)
C(11)	0,421(3)	0,634(3)	-0,007(4)	C(11)	0,013(5)	0,003(2)	0,009(5)	-0,001(5)	-0,004(8)	0,008(6)
C(12)	0,468(3)	0,664(3)	-0,104(4)	C(12)	(E)600'0	0,004(2)	0,023(8)	-0,006(7)	0,017(8)	0,003(4)
c(13)	0,386(4)	0,674(3)	-0,214(4)	C(13)	0,008(4)	0,008(3)	0,009(4)	0,001(6)	0,008(7)	0,009(5)
C(14)	0,299(4)	0,648(3)	-0,204(4)	C(14)	0,014(5)	0,001(2)	0,009(6)	-0,003(6)	-0,003(8)	0,002(5)
C(15)	0,300(4)	0,627(3)	-0,080(5)	C(15)	0,010(5)	-0,001(2)	0,060(14)	-0,008(7)	0,024(13)	-0,001(4)
C(16)	0, 287(3)	0,953(2)	-0,142(3)	C(16)	0,004(3)	0,002(2)	0,010(3)	0,004(4)	-0,009(5)	0,001(3)
c(17)	0,355(3)	0,937(3)	-0,204(3)	C(17)	0,007(3)	0,005(2)	0,005(3)	0,005(5)	0,003(5)	-0,001(4)
c(18)	0, 313(4)	0,870(3)	-0,285(4)	C(18)	0,018(5)	0,004(2)	0,009(4)	0,007(5)	0,019(7)	0,005(5)
C(19)	0,219(4)	(E)6E8'0	-0,279(3)	C(19)	0,008(4)	0,006(3)	0,005(3)	0,006(5)	-0,006(6)	0,003(5)
C(20)	0,205(3)	0,894(3)	-0,187(3)	C(20)	0,008(3)	0,005(2)	0,007(3)	0,009(4)	-0,002(5)	0,004(4)
0(1)	0,304(1)	0,801(1)	0,033(2)	0(1)	-0,000(1)	0,001(1)	0,008(2)	0,000(2)	-0,009(2)	-0,001(2)
0(2)	0,149(2)	1,025(2)	0,003(2)	0(2)	0,011(3)	0,002(1)	0,011(3)	0,004(3)	0,004(5)	0,002(3)
0(3)	0,005(2)	0,784(2)	0,071(2)	0(3)	0,003(1)	0,004(2)	0,016(3)	-0,002(4)	-0,003(3)	-0,001(3)
0(4)	0,170(2)	0,954(2)	0, 382(2)	0(4)	0,008(2)	0,004(2)	0,012(3)	-0,003(3)	0,010(4)	0,002(3)
0(5)	0,580(2)	0,799(2)	0, 326(3)	0(5)	0,004(2)	0,006(2)	0,012(3)	-0,001(4)	0,001(3)	0,003(3)
0(6)	0,400(2)	1,048(2)	0,180(2)	0(6)	0,007(2)	0,003(1)	0,012(3)	0,003(3)	0,006(4)	-0,002(3)
0(1)	0,414(2)	0,917(2)	0,529(2)	0(7)	0,008(2)	0,004(2)	0,007(2)	-0 ,000 (3)	0,005(3)	-0,001(3)
o(8)	0,149(2)	0,606(2)	0,077(2)	0(8)	0,007(2)	0,002(1)	0,010(3)	-0,002(3)	-0,002(4)	-0,001(3)
(6)0	0,462(2)	0,615(2)	0,314(3)	(6)0	0,005(2)	0,004(2)	0,017(4)	0,002(4)	0,003(4)	0,003(3)
0(10)	0,231(2)	0,729(2)	0,464(2)	0(10)	0,011(2)	0,005(2)	0,010(3)	0,000(3)	0,013(4)	-0,002(3)

Tab. 4. Atomkoordinaten und anisotrope Temperaturparameter der Form $\exp((\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{13}kl + \beta_{12}kk)$ für

	(CO) ₉ Co ₃ CC	J_2Zr(η-C ₅ H	I ₅) ₂ (4b). (Die Stat	ndardabweichı	ungen in Kla	mmern sind	auf die jeweil:	s letzte Steile d	er Zahlenwerte l	bezogen.)
Atom	×	Y	N	Atom	BIL	Baa	6,9	6 13	e 1 B	Bia
Zr(1)	0,35732(6)	0,96790(7)	0,13335(8)	Zr(1)	0,00177(3)	0,00188(4)	0,00273(4)	0,00000(8)	-0,00018(7)	0,00005(6)
Co(1)	0,1659(1)	0,8600(1)	0,0697(1)	Co(1)	0,00162(5)	0,00225(7)	0,00371(9)	0,00113(14)	0,00040(12)	0,00072(10)
Co(2)	0,1701(1)	0,9748(1)	0,0136(1)	Co(2)	0,00178(5)	0,00205(7)	0,00371(9)	0,00072(14)	0,00093(12)	-0,00038(11)
Co(3)	0,2221(1)	0,8766(1)	-0,0474(1)	Co(3)	0,00194(5)	0,00257(7)	0,00262(8)	-0,00068(13)	0,00113(11)	-0,00018(11)
Co(21)	0,4963(1)	0,8097(1)	0,2312(1)	Co(21)	0,00182(5)	0,00200(6)	0,00387(10)	0,00018(14)	-0,00093(13)	0,00027(11)
Co(22)	0,4317(1)	0,7361(1)	0,1541(1)	Co(22)	0,00257(6)	0,00179(7)	0,00379(10)	-0,00066(14)	-0,00062(13)	0,00111(11)
Co(23)	o, 3982(1)	0,7681(1)	0,2796(1)	Co(23)	0,00214(6)	0,00258(8)	0,00371(10)	0,00211(15)	0,00079(13)	0,00036(11)
c(1)	0,2343(7)	0,9173(7)	0,0469(8)	C(1)	0,0019(4)	0,0020(5)	0,0023(6)	-0,0001(9)	0,0009(8)	0,0000(7)
c(2)	0,1869(8)	0,7697(10)	0,0684(13)	C(2)	0,0019(5)	0,0041(7)	0,0074(12)	0,0030(16)	0,0009(13)	-0,0008(10)
c(3)	0,1639(8)	0,8724(11)	0,1672(11)	C(3)	0,0015(4)	0,0041(8)	0,0056(9)	-0,0000(14)	-0,0005(10)	-0,0035(10)
C(4)	0,0878(9)	0,8518(10)	0,0415(12)	C(4)	0,0030(5)	0,0026(7)	0,0058(10)	0,0011(14)	0,0004(12)	-0,0026(10)
c(5)	0,1412(8)	(6)0110'1	0,0948(12)	C(5)	0,0025(5)	0,0020(6)	0,0064(9)	0,0001(12)	-0,0014(12)	0,0010(9)
C(6)	0,2136(7)	1,0467(9)	-0,0205(11)	C(6)	0,0018(4)	0,0025(6)	0,0021(9)	0,0021(11)	-0,0004(10)	-0,0015(8)
c(7)	0,1023(8)	0,9761(10)	-0,0419(11)	c(7)	0,0026(5)	0,0029(6)	0,0045(8)	-0,0031(12)	-0,0015(10)	0,0003(10)
c(8)	0,2746(9)	0,8090(10)	-0,0393(10)	C(8)	0,0027(5)	0,0046(7)	0,0026(7)	-0,0001(12)	-0,0004(10)	-0,0021(10)
c(9)	0,2664(8)	0,9280(10)	-0,1052(10)	C(9)	0,0019(5)	0,0051(8)	0,0036(7)	-0,0009(12)	-0,0021(10)	0,0008(10)
c(10)	0,1638(9)	0,8416(9)	-0,1064(11)	C(10)	0,0036(6)	0,0021(5)	0,0042(8)	-0,0006(11)	-0,0000(11)	-0,0016(10)
c(11)	0,3804(8)	1,0173(11)	0,0107(10)	c(11)	0,0025(4)	0,0051(10)	(7)6600,0	0,0047(14)	-0,0016(9)	0,0014(11)
c(12)	0,4074(9)	1,0609(9)	0,0602(12)	C(12)	0,0027(6)	0,0028(6)	0,0057(11)	0,0024(13)	-0,0037(13)	0,0005(9)
c(13)	0,4533(9)	1,0246(11)	0,0955(11)	C(13)	0,0029(5)	0,0041(8)	0,0059(8)	-0,0006(14)	-0,0042(11)	0,0031(11)
C(14)	0,4553(7)	0,9605(10)	0,0646(10)	C(14)	0,0015(4)	0,0049(8)	0,0057(8)	0,0063(14)	-0,0042(9)	-0,0014(9)
c(15)	0,4109(9)	0,9559(10)	0,0112(10)	C(15)	0,0039(6)	0,0041(7)	0,0034(7)	0,0006(11)	-0,0061(11)	0,0024(11)
c(21)	0,4143(7)	0,8250(8)	0,1937(9)	C(21)	0,00124(4)	0,00268(5)	0,00265(6)	-0,0010(9)	-0,0010(8)	-0,0008(7)
c(22)	0,5046(9)	0,8919(10)	0,2761(12)	C(22)	0,0018(5)	0,0038(7)	0,0064(10)	-0,0026(14)	0,0019(12)	-0,0014(10)
C(23)	0,5461(8)	0,8220(10)	0,1567(11)	C(23)	0,0022(4)	0,0032(7)	0,0054(9)	-0,0015(13)	0,0020(10)	-0,0007(9)
C(24)	0,5382(8)	0,7526(11)	0, 2869(11)	C(24)	0,0026(4)	0,0034(7)	0,0050(9)	0,0006(13)	0,0034(11)	0,0007(10)
c(25)	0,4478(10)	0,7630(10)	0,0610(11)	C(25)	0,0037(6)	0,0024(6)	0,0050(8)	-0,0040(12)	-0,0021(12)	-0,0004(10)
C(26)	0,3582(10)	0,6993(10)	0,1350(14)	C(26)	0,0030(6)	0,0039(7)	0,0072(11)	-0,0006(16)	-0,0043(14)	0,0004(11)
c(27)	0,4772(9)	0,6578(11)	0,1720(11)	C(27)	0,0022(5)	0,0055(9)	0,0039(9)	-0,0005(14)	0,0008(10)	0,0008(11)
c(28)	0,3219(10)	0,7681(12)	0,2728(12)	C(28)	0,0036(6)	0,0053(10)	0,0046(10)	0,0049(16)	0,0019(13)	0,0038(13)
C(29)	0,4045(10)	0,8240(9)	0,3583(11)	C(29)	0,0034(6)	0,0024(5)	0,0044(8)	0,0021(11)	0,0008(12)	-0,0010(10)
C(30)	0,4153(10)	0,6862(10)	0,3212(11)	C(30)	0,0032(7)	0,0034(6)	0,0046(9)	0,0033(12)	0,0029(12)	0,0003(11)
c(31)	0,2753(9)	1,0153(10)	0,2126(11)	C(31)	0,0017(5)	0,0060(B)	0,0047(9)	-0,0065(14)	-0,0012(11)	-0,0020(10)
C(32)	0,3119(12)	1,0687(10)	0,1985(11)	C(32)	0,0090(10)	0,0020(6)	0,0030(8)	0,0012(12)	-0,0036(15)	-0,0050(14)
C(33)	0,3692(9)	1,0539(13)	0,2333(11)	C(33)	0,0025(5)	0,0085(11)	0,0050(9)	-0,0097(17)	-0,0039(11)	0,0048(13)
c(34)	0,3560(11)	0,9902(15)	0,2694(11)	C(34)	0,0051(8)	0,0089(14)	0,0020(8)	-0,0032(17)	0,0029(13)	-0,0078(18)
C(32)	0,3024(10)	0,9720(11)	0,2527(11)	C(32)	0,0064(8)	0,0030(7)	0,0048(8)	-0,0011(13)	-0,0088(13)	-0,0013(13)

Atom	×	у	z	Atom	μι	9	ιι (θ	۵1	B1.
0(1)	0,2836(4)	0,9311(5)	0,0823(5)	0(1)	0,0019(3)	0,0026(3)	0,0018(4)	0,0009(6)	-0,0007(5)	-0,0006(5)
0(2)	0,1943(8)	0,7150(7)	0,0704(13)	0(2)	0,0049(6)	0,0032(5)	0,0130(14)	0,0032(14)	0,0046(15)	0,0022(9)
0(3)	0,1622(8)	0,8811(10)	0,2287(8)	0(3)	0,0051(6)	0,0076(9)	0,0046(6)	-0,0001(12)	0,0010(10)	-0,0034(12)
0(4)	0,0393(6)	0,8450(9)	0,0270(10)	0(4)	0,0025(4)	0,0058(7)	0,0082(9)	0,0007(14)	-0,0012(9)	-0,0030(8)
0(5)	0,1225(7)	1,0333(7)	0,1501(9)	0(5)	0,0045(5)	0,0029(4)	0,0072(8)	-0,0015(10)	0,0034(10)	0,0004(8)
0(6)	0,2386(7)	1,0905(7)	-0,0414(10)	0(6)	0,0041(5)	0,0027(4)	0,0104(11)	-0,0024(12)	0,0016(12)	0,0018(8)
0(7)	0,0589(6)	0,9806(8)	-0,0730(8)	0(1)	0,0028(4)	0,0051(6)	0,0069(7)	-0,0014(11)	-0,0044(9)	-0,0004(8)
o(8)	0,3123(7)	0,7707(8)	-0,0332(8)	0(8)	0,0041(5)	0,0063(7)	0,0053(7)	-0,0008(11)	0,0006(9)	-0,0044(10)
(6)0	0,2964(6)	0,9603(9)	-0,1410(8)	(6)0	0,0032(4)	0,0069(7)	0,0044(6)	-0,0048(11)	-0,0024(8)	0,0019(9)
0(10)	0,1281(7)	0,8198(8)	-0,1456(9)	0(10)	0,0044(5)	0,0051(6)	0,0063(8)	0,0005(11)	-0,0051(10)	0,0040(9)
0(21)	0, 3883(5)	0,8773(5)	0,1678(5)	0(21)	0,0020(3)	0,0015(3)	0,0021(4)	0,0006(5)	-0,0006(5)	0,0005(5)
0(22)	0,5122(7)	0,9438(6)	0,2935(11)	0(22)	0,0035(5)	0,0026(4)	0,0114(11)	0,0033(11)	0,0022(12)	-0,0012(7)
0(23)	0,5773(7)	0,8312(9)	(6)1100(6)	0(23)	0,0033(5)	0,0055(7)	0,0073(8)	-0,0038(13)	-0,0024(10)	0,0008(10)
0(24)	0,5646(7)	0,7161(7)	(6) TEZE ' O	0(24)	0,0039(5)	0,0039(5)	0,0075(8)	-0,0016(10)	0,0048(10)	0,0023(8)
o(25)	0,4581(8)	0,7806(8)	0,0049(8)	0(25)	0,0072(7)	0,0046(6)	0,0033(5)	-0,0026(10)	-0,0003(10)	-0,0008(10)
0(26)	0,3155(7)	0,6766(8)	0,1205(11)	0(26)	0,0031(4)	0,0044(6)	0,0121(12)	-0,0034(14)	-0,0064(12)	-0,0010(8)
0(27)	0, 5025(7)	0,6103(6)	0,1879(9)	0(27)	0,0034(4)	0,0029(4)	0,0084(8)	0,0013(10)	0,0001(10)	-0,0034(7)
o(28)	0,2691(7)	0,7673(12)	0,2688(12)	0(28)	0,0032(5)	0,0099(11)	0,0103(12)	0,0061(20)	0,0022(12)	0,0030(13)
0(29)	0,4052(7)	0,8579(8)	0,4074(8)	0(29)	0,0041(5)	0,0047(6)	0,0051(6)	-0,0012(10)	0,0010(9)	0,0003(9)
(06)0	0,4241(8)	0,6350(8)	0.3453(10)	0(30)	0.0052(6)	0.0044(6)	0.0074(8)	0.0036(12)	0.0014(12)	0.0008(10)

Tab. 5 (Fortsetzung)

Atom	×	У	N	Atom	911	ßaa	B a a	Bas	Bii	812
c(10)	0,164(2)	0,844(2)	-0,109(2)	C(10)	0,005(2)	0,001(1)	0,005(2)	-0,000(2)	-0,005(3)	-0,001(2)
c(11)	0,381(2)	1,021(2)	0,007(2)	C(11)	0,003(1)	0,005(5)	0,003(1)	0,003(3)	-0,001(2)	-0,002(2)
C(12)	0,410(2)	1,058(2)	0,064(2)	C(12)	0,007(2)	0,002(1)	0,002(2)	0,002(2)	-0,010(4)	0,000(2)
c(13)	0,455(2)	1,177(2)	0,100(2)	C(13)	0,001(1)	0,005(2)	0,006(2)	-0,004(3)	-0,001(2)	0,003(2)
C(14)	0,454(2)	0,959(2)	0,061(2)	C(14)	0,003(1)	0,003(1)	0,006(2)	0,007(3)	-0,003(2)	-0,003(2)
c(12)	0,409(2)	0,959(2)	0,007(2)	C(15)	0,003(1)	0,0037(8)	0,0023(10)	0,000(2)	-0,004(2)	0,003(2)
c(21)	0,4152(16)	0,8241(14)	0,1988(16)	C(27)	0,0028(10)	0,001(1)	0,002(1)	-0,002(1)	-0,001(2)	-0,000(1)
C(22)	0,507(2)	0,893(2)	0,276(2)	c(22)	0,003(1)	0,002(1)	0,002(1)	-0, 001 (2)	0,000(2)	-0,001(2)
C(23)	0,547(2)	0,823(2)	0,155(2)	C(23)	0,004(1)	0,006(1)	0,007(2)	-0,002(2)	-0,004(3)	0,003(2)
C(24)	0,540(2)	0,753(2)	0,288(2)	C(24)	0,002(1)	0,002(1)	0,007(2)	0,002(2)	0,006(2)	-0,002(2)
c(25)	0,440(2)	0,764(2)	0,058(2)	C(25)	0,005(2)	0,002(1)	0,001(1)	-0,001(2)	-0,001(2)	-0,000(2)
C(26)	0,360(2)	0,702(2)	0,135(2)	C(26)	0,003(1)	0,003(1)	0,008(3)	-0,004(3)	-0,007(3)	0,004(2)
c(27)	0,479(2)	0,661(2)	0,165(2)	C(27)	0,004(2)	0,003(1)	0,003(1)	-0,005(2)	0,005(2)	-0,002(2)
C(28)	0,325(2)	0,768(2)	0,268(2)	C(28)	0,004(1)	0,004(2)	0,003(2)	0,005(3)	0,001(2)	0,003(2)
C(29)	0,403(2)	0,825(2)	0,358(2)	C(29)	0,005(2)	0,003(1)	0,002(1)	0,006(2)	0,001(3)	0,003(2)
c(30)	0,415(2)	0,685(2)	0,319(2)	C(30)	0,006(2)	0,002(1)	0,002(1)	0,003(2)	0,001(2)	0,001(2)
c(31)	0,276(2)	0,013(2)	0,213(2)	C(31)	0,004(2)	0,004(2)	0,005(2)	-0,005(3)	-0,003(3)	-0,003(3)
c(32)	0, 309(3)	1,065(2)	0, 200(2)	C(32)	0,008(2)	(1)E00'0	0,002(1)	-0,000(2)	-0,007(3)	-0,007(3)
C(33)	0,366(2)	1,054(2)	0, 231(2)	C(33)	0,004(1)	0,008(2)	0,002(2)	-0,012(4)	-0,003(2)	0,006(3)
C(34)	0, 359(2)	0,990(2)	0, 270(2)	C(34)	0,006(2)	0,006(2)	0,001(1)	-0,006(2)	0,001(2)	-0,007(3)
C(35)	0, 303(2)	0,970(2)	0, 256(2)	C(32)	0,003(1)	0.004(1)	0,003(2)	-0,002(3)	-0,003(2)	0.001(2)
0(1)	0,2858(10)	0,9315(9)	0,0838(13)	0(1)	0,0021(6)	0,0008(5)	0,0050(10)	0,0036(12)	0,0028(13)	0,00015(9)
0(2)	0,196(2)	0,715(1)	0,075(3)	0(2)	0,006(1)	0,002(1)	0,016(3)	0,004(3)	0,009(4)	0,002(2)
0(3)	0,164(1)	0,880(2)	0,233(2)	0(3)	0,009(1)	0,003(2)	0,001(1)	0,001(2)	-0,001(2)	-0,003(2)
0(4)	0,040(1)	0,856(2)	0,028(2)	0(4)	0,004(1)	0,005(1)	0,008(2)	0,004(3)	-0,003(2)	-0,002(2)
0(5)	0,124(1)	1,033(1)	0,149(2)	0(5)	0,006(1)	0,003(1)	0,005(1)	-0,001(2)	0,007(2)	0,001(2)
0(6)	0,238(2)	(1)660'1	-0,043(2)	0(6)	0,006(1)	0,002(1)	0,011(2)	-0,002(2)	0,003(3)	0,002(2)
0(1)	0,058(1)	0,982(1)	-0,073(2)	0(1)	0,003(1)	0,004(1)	0,008(2)	-0,001(2)	-0,004(2)	0,001(2)
o(8)	0,314(1)	0,773(2)	-0,036(2)	0(8)	0,004(1)	0,005(1)	0,005(1)	0,000(2)	-0,003(2)	-0,006(2)
(6)0	0,299(1)	0,961(2)	-0,143(2)	(6)0	0,004(1)	0,007(1)	0,004(1)	-0,004(2)	-0,000(2)	0,001(2)
0(10)	0,129(1)	0,820(2)	-0,145(2)	0(10)	0,005(1)	0,004(1)	0,005(1)	0,000(2)	-0,003(2)	0,004(2)
0(21)	0,3884(9)	0,8784(9)	0,1700(10)	0(21)	0,0020(5)	0,0012(5)	0,0015(7)	0,0017(10)	-0,0025(10)	-0,0005(9)
0(22)	0,515(1)	0,946(1)	0,294(2)	0(22)	0,003(1)	0,002(1)	0,015(3)	0,007(2)	0,006(3)	0,001(1)
0(23)	0, 580(2)	0,832(2)	0,110(2)	o(23)	0,004(1)	0,006(2)	0,007(2)	-0,003(2)	-0,005(2)	0,001(2)
0(24)	0,564(2)	0,714(1)	0,324(2)	0(24)	0,005(1)	0,004(1)	0,006(1)	-0,001(2)	0,007(2)	0,004(2)
O(25)	0,459(2)	0,780(2)	0,003(2)	0(25)	0,008(2)	0,004(1)	0,003(1)	0,000(2)	-0,002(2)	-0,001(2)
0(26)	0,316(2)	0,677(2)	0,122(2)	0(26)	0,004(1)	0,004(1)	0,010(2)	-0,002(3)	-0,003(4)	-0,002(2)
0(27)	0,504(1)	0,612(1)	0,185(2)	0(27)	0,004(1)	0,002(1)	0,008(2)	0,000(2)	-0,000(2)	-0,003(1)
0(28)	0,269(1)	0,768(2)	0,266(2)	o(28)	0,004(1)	0,007(2)	0,007(2)	0,000(3)	-0,000(2)	0,001(2)
0(29)	0,403(2)	0,857(2)	0,409(2)	0(29)	0,006(1)	0,004(1)	0,004(1)	-0,001(2)	0,002(2)	0,001(2)
(06)0	0,426(2)	0,636(1)	0,345(2)	0(30)	0,007(2)	0,003(1)	0,005(1)	0,003(2)	-0,002(2)	0,002(2)

Atom	×	Y	z	Atom	β.1	Baa	ßaa	β,,	β13	β.z
H£(1)	0, 35794(6)	0,96825(6)	0,13301(7)	Hf(1)	0,00172(3)	0,00080(3)	0,00189(4)	-0,00003(6)	-0,00018(7)	0,00001(6)
Co(1)	0,1667(2)	0,8605(2)	0,0701(3)	Co(1)	0,0019(1)	0,0014(1)	0,0033(2)	0,0009(2)	0,0001(2)	0,0008(2)
Co(2)	0,1711(2)	0,9759(2)	0,0141(3)	Co(2)	0,0022(1)	0,0012(1)	0,0034(2)	0,0005(3)	0,0005(2)	-0,0001(2)
Co(3)	0,2223(2)	0,8770(2)	-0,0477(3)	Co(3)	0,0024(1)	0,0017(1)	0,0021(2)	-0,0003(2)	0,0010(2)	-0,0003(2)
Co(21)	0,4960(2)	0,8104(2)	0,2301(3)	Co(21)	0,0022(1)	0,0012(1)	0,0039(2)	0,0002(3)	-0,0011(3)	0,0002(2)
Co(22)	0,4318(2)	0,7367(2)	0,1522(3)	Co(22)	0,0030(1)	0,0012(1)	0,0031(2)	-0,0004(2)	-0,0005(3)	0,0013(2)
Co(23)	0,3978(3)	0,7681(2)	0,2779(3)	Co(23)	0,0025(1)	0,0017(1)	0,0033(2)	0,0023(3)	0,0007(3)	0,0006(2)
c(1)	0,2335(12)	0,9169(15)	0,0498(17)	c(1)	0,0007(7)	(6)6100'0	0,0030(11)	-0,0038(17)	-0,0006(14)	0,0004(12)
c(2)	0,415(2)	0,824(2)	0,199(5)	C(2)	0,004(2)	0,003(1)	0,023(7)	0,007(5)	0,013(6)	-0,001(2)
c(3)	0,166(2)	0,877(2)	0,169(3)	c(3)	0,002(1)	0,004(1)	0,006(2)	0,003(3)	-0,001(3)	-0,001(2)
c(4)	0,090(2)	0,853(2)	0,044(2)	C(4)	0,002(1)	0,003(1)	0,004(2)	-0,000(2)	-0,000(2)	-0,001(2)
c(5)	0,146(2)	1,007(2)	0,097(3)	C(5)	0,011(3)	-0,004(2)	0,011(3)	-0,004(3)	0,014(5)	-0,001(2)
c(e)	0,213(2)	1,046(2)	-0,019(2)	C(6)	0,004(1)	0,003(1)	0,005(2)	-0,002(2)	-0,005(2)	0,002(2)
c(1)	0,103(2)	0,980(2)	-0,040(2)	c(7)	0,003(1)	0,002(1)	0,005(2)	-0,002(2)	0,001(2)	-0,000(2)
c(8)	0,279(2)	0,813(2)	-0,039(2)	C(8)	0,002(1)	0,003(1)	0,003(1)	-0,001(2)	-0,001(2)	-0,001(2)
c())	0,268(2)	0,931(2)	-0, 106(2)	C(9)	0,002(1)	0,004(1)	0,003(1)	0,000(2)	-0.001(2)	0,001(2)

Tab. 6 (Fortsetzung)

Aus anschließend gerechneten dreidimensionalen Differenz-Fourier-Synthesen resultierte ein eindeutiges, komplettes Molekülmodell (ohne Wasserstoffatome). Das so gewonnene Strukturmodell wurde unter Einschluß der als beobachtet behandelten Reflexe nach der Kleinste-Quadrate-Verfeinerung mit einer Blockdiagonal-Matrix¹⁴⁾ unter Berechnung von anisotropen Temperaturfaktoren für alle Atome verfeinert. Da innerhalb der Fehlergrenzen die Zellparameter der Komplexe **3c** und **4c** mit denjenigen von **3b** und **4b** übereinstimmten, konnte auf einen isostrukturellen Aufbau der Moleküle geschlossen werden. Aufgrund dieser Annahme wurden sämtliche Atomkoordinaten übernommen und gleich in den Verfeinerungsrechnungen benutzt. Die höchste Restelektronendichte fand sich bei **3c** mit maximal 2.5 e/Å³. In allen anderen Fällen lag sie darunter.

Diskussion

In den Abb. 2 und 3 sind die Molekülstrukturen der Verbindungen 3b (3c), 4b (4c) wiedergegeben.

Abb. 2. Molekülstruktur von (CO)₉Co₃COM(Cl)(η -C₅H₅)₂ (M = Zr (**3b**), Hf (**3c**))

Die Methylidyntricobaltcluster-Reste in sämtlichen untersuchten Komplexen sind identisch aufgebaut und weisen nur geringfügige Unterschiede in vergleichbaren Atomabständen und Winkeln auf (Tab. 7). Sie entsprechen in den Abmessungen den bisher untersuchten Methylidynclustern^{7,15-17)}. Die Carbonylgruppen sind alle endständig. Jeweils 3 stehen nahezu senkrecht auf der durch die 3 Cobaltatome gebildeten Fläche und nehmen somit axiale Positionen ein. Die übrigen 6 sind äquatorial angeordnet. Die

¹⁴⁾ F. R. Ahmed, R. S. Hall, M. E. Pippy und C. P. Huber, BLOCDIAG, World List of Crystallographic Programs, Second Edition, App. 52 (1966).

¹⁵⁾ P. W. Sutton und L. F. Dahl, J. Am. Chem. Soc. 93, 6032 (1971).

¹⁶⁾ V. Bätzel, Z. Naturforsch., Teil B 31, 342 (1976).

¹⁷⁾ G. Schmid, V. Bätzel und B. Stutte, J. Organomet. Chem. 113, 67 (1976).

Abb. 3. Molekülstruktur von $[(CO)_9Co_3CO]_2M(\eta-C_5H_5)_2$ (M = Zr (4b), Hf (4c))

Tab. 7. Atomabstände [pm] und wichtige Winkel [°] der Verbindungen (CO)₉Co₃COM(Cl)-(η-C₅H₅)₂ (3) und [(CO)₉Co₃CO]₂M(η-C₅H₅)₂ (4). (Die in Klammern angegebenen Standard-abweichungen beziehen sich auf die letzte Stelle der Zahlenwerte.)

	36	3c	40	40		36	36	46	40
Co(1)-Co(2)	247.9(1)	248.0(3)	246.7(3)	248.6(9)	Co(1)-C(1)-O(1)	133.7	136.0	132.7	135.7
Co(1)-Co(3)	248.9(1)	249.1(3)	248.2(3)	250.8(9)	Co(2)-C(1)-O(1)	130.8	128.1	131.6	130.6
Co(2)-Co(3)	249.0(1)	248.9(3)	249.9(3)	250.8(9)	Co(3)-C(1)-O(1)	131.4	132.7	130.5	127.6
	248.6	248.7	248.3	250.1					
					Co(21)-C(21)-O(21)			132.4	130.9
Co(21)-Co(22)			246.7(3)	247.1(9)	'Co(22)-C(21)-O(21)			133.3	128.5
Co(21)-Co(23)			248.8(3)	249.4(9)	Co(23)-C(21)-O(21)			132.4	133.4
Co(22)-Co(23)			247.3(3)	247.2(9)					
			247.6	247.9	C(1)-O(1)-M	165.5	165.7	170.9	170.8
					C(21)-O(21)-M			171.5	171.6
Co(1)-C(1)	194.5(6)	191(3)	193(2)	189(4)					
Co(2)-C(1)	192,1(6)	198(3)	192(2)	192(4)	O(1)-M-C1	93.8	94.8		
Co(3)-C(1)	192.4(6)	194(3)	190(2)	194(4)	$Cp(1) - M - Cp(2)^{a}$	130.3	128.5	129.3	129.5
	193.0	194	192	192	O(21)-M-O(1)			96.1	96,1
Co(21)-C(21)			197(2)	194(4)					
Co(22)-C(21)			192(2)	191(4)	a) co = Mittelounk	t C.H.			
Co(23)-C(21)			195(2)	194(4)	cp - nicceipuni	,.,			
			195	193					
C(1)-O(1)	127.6(6)	132(3)	130(2)	135(4)					
C(21)-O(21)			127(2)	133(4)					
O(1)-M	203.6(4)	196.8(8)	201.5(9)	197(2)					
O(21)-M			200.1(9)	200(2)					
M-Cl	244.1(2)	241.3(5)							
M-C (Ring)(Mittel)	250.1	253.1	248.1	249.8					
Co-C (Mittel)	180.1	182.3	179.4	179.1					
C-O (Mittel)	113.0	111.6	111.6	112.8					
C-C (Mittel)	137.9	146.7	136.7	137.4					
C 259/77. Tab.7							<u> </u>		

C-O-Bindungslängen liegen mit 111.6–113.0 pm ebenso im Bereich der Erwartungen wie die Co-CO-Abstände mit 179.1–182.3 pm. Die C-O-Bindungslängen der apikalen CO-Gruppen weisen dagegen einen Gang auf. Beim Übergang von **3a** nach **3c** nehmen die Abstände deutlich zu: 122 pm²⁾ (**3a**), 127.6 pm (**3b**) und 132.0 pm (**3c**). Auch die Verbindungen **4b** und **4c** unterscheiden sich hier mit 129.8 bzw. 126.5 pm (**4b**) und 134.6 bzw. 132.5 pm (**4c**) für die beiden Clusterreste deutlich. Diese Effekte dürften auf zunehmende Doppelbindungsanteile in den M-O-Bindungen der Reihe Ti-O < Zr-O < Hf-O zurückzuführen sein.

Auffallend ist die Winkelaufweitung am Sauerstoffatom der C-O-M-Gruppe. Während in den Verbindungen **3b** und **3c** der Winkel mit 165.5° bzw. 165.7° (**3a** = 164.7°) praktisch gleich ist, wird beim Übergang zu den 2 Clusterreste tragenden Komplexen **4b** und **4c** der Winkel um ca. 5° aufgeweitet, was auf die gegenseitige sterische Behinderung der beiden (CO)₉Co₃CO-Reste zurückzuführen sein dürfte.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeiten. Dem Fachbereich Geowissenschaften sind wir für die Bereitstellung des Diffraktometers sowie der Rechenanlage (IBM 370/145) zu Dank verpflichtet.

Experimenteller Teil

Die nachfolgend beschriebenen Reaktionen wurden unter Ausschluß von Luft und Feuchtigkeit in einer Atmosphäre trockenen Stickstoffs durchgeführt. Lösungsmittel waren absolutiert, frisch destilliert und stickstoffgesättigt.

Die ¹H-NMR-Spektren wurden an einem Varian T 60, die IR-Spektren mittels des Gitterspektrometers Perkin-Elmer 457 aufgenommen. Analysen fertigten die Firma A. Bernhardt, Elbach, und die Analytische Abteilung des Fachbereichs Chemie Marburg an.

Die verwendeten Ausgangsverbindungen $[Co_2(CO)_8, (\eta-C_5H_5)_2TiCl_2, (\eta-C_5H_5)_2ZrCl_2]$ wurden käuflich erworben. $[(CO)_{10}Co_3]Li^{5}$, $[(\eta-C_5H_5)_2TiCl]_2O^{10}$ und $(\eta-C_5H_5)_2HfCl_2^{18}$ wurden nach Literaturvorschriften dargestellt.

 μ_3 -{[Chlorobis(η -cyclopentadienyl)titanoxy]methylidyn}-cyclo-tris(tricarbonylcobalt)(3 Co-Co) (3a): Eine Lösung von ca. 11.2 mmol 1 in 130 ml Benzol wurde bei Raumtemp. unter Rühren innerhalb von 48 h tropfenweise zu 2.74 g (11.0 mmol) 2a in 120 ml Benzol gegeben und weitere 48 h gerührt. Nach dem Abfritten der tiefroten Reaktionslösung wurde das Lösungsmittel i. Vak. verflüchtigt, wobei 5.90 g eines schwarzen, teils kristallinen Feststoffs erhalten wurden. Nach dem Waschen mit 50 ml Pentan wurde mit 180 ml Toluol versetzt und bei 50°C 30 min gerührt und filtriert. Abkühlen des Filtrats auf -35°C lieferte 4.18 g (56.7%) analysenreines **3a**, das mit dem aus Co₂(CO)₈ und (η -C₅H₅)₂TiCl₂ dargestellten Produkt²) (spektroskopisch) identisch ist, Schmp. 134°C.

C₂₀H₁₀ClCo₃O₁₀Ti (670.5) Ber. C 35.83 H 1.50 Cl 5.29 Gef. C 36.36 H 1.51 Cl 5.64

 μ_3 -{[Chlorobis(η -cyclopentadienyl)zirconiumoxy]methylidyn}-cyclo-tris(tricarbonylcobalt)-(3 Co-Co) (**3b**): Eine Lösung von ca. 8.55 mmol **1** in 100 ml Toluoł wurde bei Raumtemp. unter Rühren zu einer Lösung von 2.49 g (8.52 mmol) **2b** in 300 ml Toluol getropft. Nach 25 stdg. Reaktionszeit wurde das dunkelrote Reaktionsgemisch unter Erwärmung auf 50 °C i. Vak. bis auf 60 ml eingeengt, abgefrittet und die Reaktionslösung bei -25 °C 3 d stehengelassen. Danach konnten 4.40 g (72.4%) kristallines **3b** isoliert werden. Schmp. 138 - 141 °C.

 $\begin{array}{c} C_{20}H_{10}ClCo_{3}O_{10}Zr \ (713.8) \\ Gef. \ C \ 33.66 \ H \ 1.41 \ Cl \ 4.97 \ Co \ 24.77 \ Zr \ 12.78 \\ Gef. \ C \ 34.42 \ H \ 1.42 \ Cl \ 4.73 \ Co \ 24.68 \ Zr \ 11.91 \end{array}$

¹⁸⁾ M. D. Rausch, H. B. Gordon und E. Samuel, J. Coord. Chem. 1, 141 (1971).

 μ_3 -{[Chlorobis(η -cyclopentadienyl)hafniumoxy]methylidyn}-cyclo-tris(tricarbonylcobalt)-(3 Co-Co) (3c): 6.56 mmol 1 in 80 ml Toluol wurden bei Raumtemp. unter Rühren zu 2.23 g (5.87 mmol) 2c, gelöst in 70 ml Toluol, im Verlaufe von 15 h getropft. Nach weiteren 10 h wurde die karminrote Lösung von Ungelöstem abgefrittet, i. Vak. zur Trockne eingeengt und das Rohprodukt aus Toluol umkristallisiert. Ausb. 4.15 g (88.2%) 3c. Schmp. 139-142 °C.

 $\begin{array}{c} C_{20}H_{10}ClCo_{3}HfO_{10} \ \ (801.0) \\ Gef. \ C \ 29.99 \ \ H \ 1.26 \ \ Cl \ 4.43 \ \ Co \ 22.07 \ \ Hf \ 22.28 \\ Gef. \ \ C \ 30.55 \ \ H \ 1.29 \ \ Cl \ 4.46 \ \ Co \ 22.31 \ \ Hf \ 21.96 \\ \end{array}$

Bis $(\eta$ -cyclopentadienyl)bis $[(\mu_3$ -oxymethylidyn)-cyclo-tris(tricarbonylcobalt)(3 Co-Co)]titan(4a): Zu 7.37 mmol 1 in 70 ml Benzol wurden im Verlaufe von 72 h 0.85 g (3.41 mmol) 2a in 110 ml Benzol getropft. Nach weiterem 48 stdg. Rühren wurde abgefrittet und die dunkelrote Lösung i. Vak. bis zur Trockne eingeengt. Nach dem Waschen mit 60 ml Petrolether wurde in 80 ml Toluol aufgenommen, auf 50°C erhitzt und nach 30 min schnell abgefrittet. Aus dem Filtrat fiel innerhalb von 72 h bei -25° C 0.94 g schwarzes 4a aus. Aus der Mutterlauge konnten durch weiteres Einengen nochmals 0.49 g 4a gewonnen werden. Gesamtausb. 1.43 g (38.4%). Zers.-P. 158–160°C.

> $C_{30}H_{10}Co_6O_{20}Ti$ (1091.9) Ber. C 33.00 H 0.92 Co 32.38 Ti 4.39 Gef. C 33.65 H 1.08 Co 30.82 Ti 4.47 Molmasse 1216 (osmometr. in THF)

Bis $(\eta$ -cyclopentadienyl)bis $[(\mu_3 - oxymethylidyn)$ -cyclo-tris(tricarbonylcobalt)(3 Co - Co)]zirconium (4b): 0.91 g (3.11 mmol) 2b, gelöst in 100 ml Toluol, wurden innerhalb von 24 h zu einer Lösung von 6.9 mmol 1 in 100 ml Toluol getropft. Nach weiteren 24 h wurde die dunkelrote Lösung vom Niederschlag abgetrennt und das Lösungsmittel i. Vak. verflüchtigt. Zur Reinigung wurde das so erhaltene Rohprodukt, das noch geringe Mengen 3b enthielt, nach dem Waschen mit 25 ml Petrolether, in 110 ml Toluol auf 50°C erhitzt. Nach 1 h wurde abgefrittet und das Filtrat 3 d bei -25°C aufbewahrt. Es fielen 1.24 g (35.1%) kristallines 4b aus, Zers.-P. 145°C.

Bis $(\eta$ -cyclopentadienyl)bis $[(\mu_3$ -oxymethylidyn)-cyclo-tris(tricarbonylcobalt)(3 Co - Co)]hafnium (4c): In eine Lösung von ca. 7.14 mmol 1 in 100 ml Benzol wurden innerhalb von 24 h 1.35 g (3.56 mmol) 2c, gelöst in 80 ml Benzol, zugegeben. Nach weiterem 24stdg. Rühren bei Raumtemp. wurde die dunkelrote Lösung abgetrennt und das Benzol i. Vak. vollständig entfernt. Es hinterblieben 3.41 g Rohprodukt, die aus 100 ml Toluol umkristallisiert wurden. Ausb. 2.84 g (65.3%) 4c, Zers.-P. 145°C.

 $\begin{array}{c} C_{30}H_{10}Co_{6}HfO_{20} \ (1222.5) & \mbox{Ber. C } 29.48 \ \mbox{H } 0.82 \ \ \mbox{Co } 28.92 \ \ \mbox{Hf } 14.60 \\ & \mbox{Gef. C } 28.97 \ \ \mbox{H } 0.82 \ \ \mbox{Co } 29.67 \ \ \mbox{Hf } 12.62 \end{array}$

 μ -Oxo-bis{bis(η -cyclopentadienyl)[(μ_3 -oxymethylidyn)-cyclo-tris(tricarbonylcobalt)(3 Co - Co)]-titan} (5a)

a) Zu einer Lösung von 0.43 g (0.64 mmol) **3a** in 50 ml Toluol wurden 0.35 g (8.75 mmol) festes, pulverisiertes NaOH gegeben. Nach 4stdg. Rühren bei Raumtemp. wurde die dunkelrote Lösung abgefrittet und i. Vak. das Toluol entfernt. Der schwarze Rückstand wurde zweimal mit je 5 ml Pentan gewaschen und anschließend i. Vak. getrocknet. Ausb. 0.15 g (36.4%). Zers.-P. 165°C.

C40H20C06O21Ti2 (1286.0) Ber. C 37.36 H 1.57 Gef. C 37.62 H 1.62

b) Zu einer Lösung von ca. 7.4 mmol 1 in 100 ml Toluol wurde bei Raumtemp. unter Rühren innerhalb von 2 h eine Aufschlämmung von 1.29 g (2.91 mmol) $[(\eta-C_5H_5)_2\text{TiCl}]_2\text{O}$ in 80 ml Toluol gegeben und anschließend noch 12 h weitergerührt. Nach dem Abfritten wurde das Filtrat zur Trockne eingedampft und der schwarze Rückstand zweimal mit je 10 ml Petrolether und 10 ml

Toluol gewaschen. Man nahm erneut in 90 ml Toluol auf und erhitzte auf 40 °C. Nach 1 h wurde abgefrittet und das Filtrat 1 Woche bei -25 °C aufbewahrt. Es fielen 0.16 g (4.3%) schwarze Kristallplättchen von 5a aus. Zers.-P. 165 °C.

C40H20C06O21Zr2 (1286.0) Ber. C 37.36 H 1.57 Gef. C 36.81 H 1.56

Die IR-Spektren der beiden nach a) und b) hergestellten Produkte sind identisch.

 μ -Oxo-bis{bis(η -cyclopentadienyl)[(μ_3 -oxymethylidyn)-cyclo-tris(tricarbonylcobalt)(3 Co - Co)]zirconium} (**5b**): 0.62 g (0.87 mmol) **3b**, gelöst in 130 ml Toluol, wurden mit 0.53 g (13.3 mmol) feingepulvertem NaOH bei 0°C 3 h gerührt. Nach kurzzeitigem Erwärmen auf 50°C wurde abgefrittet und das Filtrat i. Vak. zur Trockne eingeengt. Nach zweimaligem Waschen mit je 10 ml Petrolether wurde mit 80 ml Toluol digeriert, abgefrittet und die Lösung bei -25°C aufbewahrt. Man erhielt 0.09 g (15%) feinkristallines **5b**. Zers.-P. 160–164°C.

 $C_{40}H_{20}Co_6O_{21}Zr_2 \ (1372.6) \quad \text{Ber. C 35.00 H 1.47 Co 25.76} \quad \text{Gef. C 35.55 H 1.31 Co 25.17}$

 μ -Oxo-bis{bis(η -cyclopentadienyl)/(μ_3 -oxymethylidyn)-cyclo-tris(tricarbonylcobalt)(3 Co - Co)]hafnium} (**5**c): 0.51 g (0.64 mmol) **3c** und 0.45 g (11.3 mmol) NaOH wurden, wie bei **5b** beschrieben, umgesetzt und aufgearbeitet. Ausb. 0.095 g (19.3%) **5c**. Zers.-P. 156–160 °C.

C₄₀H₂₀Co₆Hf₂O₂₁ (1547.2) Ber. C 31.05 H 1.30 Co 22.85 Gef. C 31.53 H 1.29 Co 22.11

[259/77]